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ABSTRACT 

This paper discusses a formal, mathematically-based, approach to the analysis of operator 

interaction with machines, in general, and with complex and automated control systems, in 

particular.  It addresses the problem of correctness of displays by asking whether the display 

provides the necessary information about the machine to enable the operator to perform a specified 

task successfully and unambiguously.  A formal methodology for verification of interface 

correctness is outlined.  Additionally, a formal procedure for display synthesis, whose objective is 

to provide a succinct and correct interface for the specified task, is briefly discussed.  Special 

attention is placed on the analysis of pilots’ interaction with automated flight control systems 

onboard a modern commercial aircraft. 
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INTRODUCTION 

With the accelerated introduction of advanced automation into a variety of complex, human-

operated systems, unexpected problems with overall system performance have been observed 

(Wiener, 1989; 1993, Wiener, Chute, & Moses, 1999).  Many of these problems have been 

attributed to deficiencies in communication and coordination between the human and the machine.  

They are especially acute in cases where the human and the machine share authority over the 

system's operation (Mellor, 1994).  Notable examples of such systems are modern commercial 

aircraft with advanced flight management systems (Abbott, Slotte, & Stimson, 1996).  

While the partition of authority between the human and machine is commonly at the disposal of 

the human operator, the machine itself, under some levels of authority, can automatically trigger 

transitions between configurations.  Moreover, in safety-critical systems such as autopilots, 

automatic envelope protection devices that assume authority and cannot be overridden by the 

operator, are sometimes incorporated. 

One important and well-documented class of advanced automation systems are Automatic 

Flight Control Systems (AFCS) of modern jetliners.  In recent years, faulty pilot interaction with 

the AFCS has become a major concern in the civil transport industry. This problem has variously 

been termed as lack of mode awareness, mode confusion, or automation surprises (Woods, Sarter, 

& Billings, 1997).  Two main factors have frequently been cited in accident and incident reports 

and in the scientific literature, as being responsible for such breakdowns.  (1) The user has an 

inadequate “mental model” of the machine’s behavior (Javaux & De Keyser, 1998; Sarter & 

Woods, 1995). (2) The interface between the user and the machine provides inadequate information 

about the status of the machine (Indian Court of Inquiry, 1992; Norman, 1990).  Both factors may 

limit the user's ability to reliably predict or anticipate the next configuration (e.g., mode) of the 

machine, and hence may lead to false expectations, confusion, and error (Degani, Shafto, & Kirlik, 

1999). 

The interaction of the human operator with the machine is performed by means of an interface 

through which the user sends and receives signals and stimuli to and from the machine.  In many 

systems, the interface consists of two separate (and disjoint) components: the input-interface, or 

control panel, through which the user sends inputs (signals and/or commands) to the machine, and 

the output interface, or display, through which the user receives information from the machine.  
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The user, based on knowledge of and familiarity with the machine (typically obtained from training 

and operating manuals), possesses a model of the machine’s behavior (which we shall refer to as 

the “user-model”).   

Traditionally, most of the human factors research on display design has focused on perceptual 

and cognitive compatibility between the human and the interface format (e.g., Wickens, 1992).  

Much less research was conducted on the relationship between the interface and the machine being 

controlled.  Notable exceptions are the current work in cognitive and ecological psychology (see 

for example Vicente, 1999), and the past work in the area of manual control (Rouse, 1977). 

Faulty interaction of the user with the machine, which can lead to catastrophic results in high-

risk systems such as commercial aircraft, is variously attributed to either machine failures, or 

human errors, with the latter sometimes blamed on interface design inadequacies.  However, the 

distinction between human error and interface design inadequacies has remained blurred (see e.g. 

Aviation Week and space Technology, 1995). Furthermore, the possibility of failures because of 

ambiguous responses of the machine to pilot interaction, has not received much attention to date. 

The reason for this is the complexity of such advanced automation systems and the absence of 

rigorous methods for their systematic analysis.  

The objective of the present paper is to propose a formal and systematic approach for analyzing 

human-machine systems, as well as a formal methodology for developing correct and succinct 

interfaces. The paper is organized as follows: First, we discuss the role of the task specification as 

related to reliable human-machine interaction.  In particular, we examine  the interrelations among 

the machine’s behavior, the user-interface, the user’s model of the machine, and the task.  We then 

describe vertical flight modes in the autopilot of a modern commercial aircraft, and analyze 

possible pilot interactions with this system. We follow with a brief description of how a formal 

analysis can be performed to verify the correctness (or incorrectness) of the user-model and 

interface. Finally, we outline a methodology for display synthesis whose object is to provide a 

succinct interface that is correct for the specified task.  

FORMAL ASPECTS OF HUMAN-MACHINE INTERFACES 

In the present section we shall examine, in some detail, the required interrelation between the 

user-interface, the user-model of the machine, and the task specification for reliable and 

unambiguous human-machine interaction. It will be useful to make several basic assumptions: 
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• The underlying machine's behavior is given, and can be modeled formally within the 

framework of a well-defined modeling formalism. 

• The machine's actual behavior is deterministic; that is, at each (internal) state of the 

machine, its response to every action by the user or to external signals is unique and 

unambiguous.  

• The set of operational requirements (tasks) is formally specified. 

• The input interface (i.e., control panel) is rich enough to allow the user to execute any one 

of the specified tasks. 

• The user has knowledge of the machine's responses (obtained e.g. from user-manuals and 

training).  This “user-model” of the machine’s behavior can be represented formally.  

As mentioned earlier, in the interaction between the user and the machine, four elements play a 

central role. (1) The machine’s behavior, (2) the operational requirements, or task specification, 

formally described in the context of the machine's behavior, (3) the user-model of the machine's 

behavior, and (4) the interface through which user obtains information about the machine’s state 

and responses. These four elements must be suitably matched in order to insure correct and reliable 

user-machine interaction.  

Figure 1 schematically describes the interrelation between these elements.  The large circle 

represents the set of all machine behaviors. Each of the three inner circles represents the region 

where one of the elements is ‘adequate.’   

 

 
Figure 1.  Components of human-machine interaction. 

 



 5

In the present paper we shall always assume that the machine’s behavior is given and the task is 

adequately specified. We are interested in considering the interrelation among the “task 

specification,” “user-model,” and “interface”.  Thus, region 1 represents the situation where all 

three elements are adequate, and correct interaction is possible.  Region 2 represents the situation 

where the task specification and the user-model are adequate, but the interface is inadequate.  

Region 3 represents the situation where the task specification and the interface are adequate, but 

the user-model is not. Finally, region 4 represents the case where both the interface and the user-

model are inadequate for the task.  

To illustrate the possible discrepancies between the machine’s behavior, the user-model, and 

the interface in relation to reliable task execution, consider the machine described in Figure 2. 

 
Figure 2.  Machine model. 

 
The system starts at state 1, and upon execution (by the user) of event “α”, moves along to 

either state 2 or state 3, according to whether the condition "C1" is true or false.  The dashed edges 

represent transitions that take place automatically and instantaneously.  Thus, if state 2 is reached, 

the system moves to state 5 immediately, while if it reaches state 3, it moves to either state 5 or to 

state 4 depending on whether condition "C2" is true or false.  

Suppose that the task specification is just to drive the system to state 5 (call it S1).  In this case, 

regardless of whether conditions “C1” and/or “C2” are true or false, this will be the guaranteed 

outcome of executing event “α”.  The user does not need to know the exact path that the system 

will take from state 1 to state 5.  An adequate user-model for the system of Figure 2 and 

specification S1 is shown in Figure 3(a).  
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On the other hand, if the task specification is to drive the system from state 1 to state 5 via state 

3 (call it S2), it is necessary that condition “C1” be FALSE. However, since we do not care 

whether state 4 is visited or not, it does not matter whether condition "C2" is true or false.  An 

adequate user-model of the system in this case must exhibit the possible paths implied by condition 

“C1,” but the user-model can still be a reduced description of the system as given in Figure 3(b).  

To correctly interact with the system and execute the latter task specification (S2), the user needs to 

know whether condition C1 is true or false before executing the event “α”.  (This information must 

be given to the operator through the interface.) 

 
 

The case in which the user has a correct model (for the specification), but is not provided with 

an adequate interface (e.g., indicating whether C1 is true or false), is represented by region 2 of 

Figure 1.  Clearly, in this case, correct task execution cannot be guaranteed.  

Another possibility is that the user has an inadequate user-model. In particular, suppose the user 

is unaware of the existence of condition C1 (Figure 3(a)), and assumes that the transition to state 5 

always traverses state 3.  A correct display that indicates the status of condition C1 would not be of 

any help in this instance, since the user would not associate its value to the machine’s behavior. 

This is the case represented by region 3 of Figure 1.  Finally, the worst case (region 4 in Figure 1) 

is when neither the user-model nor the interface are adequate for the specified task.  
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A CASE STUDY: AUTOMATIC FLIGHT CONTROL SYSTEM 

In this section we shall describe and analyze one element of a flight control system onboard a 

modern jetliner.  Specifically, we describe the transition behavior of the autopilot among several 

vertical flight modes, and examine possible pilot’s interaction with these modes. The data for this 

study was obtained through a series of extensive flight simulations using this autopilot. We begin 

by describing the control panel through which the pilot interacts with the autopilot, and the display 

through which the pilot obtains information about the system’s behavior.  

Interface Description 

Figure 4(a) and 4(b) are schematic illustrations of the relevant elements of the "Guidance 

Control Panel" (GCP) and "Electronic Attitude Display Indicator” (EADI), respectively. 
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Three primary vertical flight modes of the aircraft are of interest to us: the "Hold Altitude" 

mode, in which a specified altitude value is maintained constant, and the two distinct 

climb/descend modes: "Change Level" and "Vertical Speed". The GCP illustrated in Figure 4(a) 

includes three buttons for engagement (by the pilot) of these hold-altitude and climb/descend 

modes.  In the top portion of the GCP are two windows, one indicating the selected altitude setting, 

and the other indicating the selected vertical-speed setting.  The pilot can change the altitude 

setting by rotating the altitude knob, and change the vertical speed by sliding the vertical-speed 

wheel up or down.  

Figure 4(b) is a schematic illustration of the Electronic Attitude Display Indicator (EADI) of a 

"glass cockpit" aircraft.  It includes the “Flight Mode Annunciator” which indicates (in the top 

portion of the EADI) the current modes of the aircraft.  In Figure 4(b) the current vertical mode, 

displayed in the right-most window, is “Vertical Speed” (the "Thrust" and "Lateral" modes of the 

aircraft are beyond the scope of this paper). The altitude tape, which provides the pilot with an 

indication of  the current altitude of the aircraft, is displayed in the left side of the EADI. By 

viewing both the GCP and the EADI, the pilot has knowledge of the GCP altitude setting, the 

vertical speed setting, the active vertical mode, and the current aircraft altitude at any time. 

Description of Machine Transition Diagram 

Figure 5 is a state transition diagram that describes the transitions among several vertical-flight 

modes of the autopilot under consideration.  For operational reasons (to be explained below) the 

“Hold Altitude” mode is represented twice: once in its neutral manifestation and once in the “V/S 

armed” manifestation.  Similarly, the “Vertical Speed” mode appears once as parameterized by a 

target altitude (V/S to GCP setting) and once as unparameterized (V/S unconstrained 

climb/descent, without a target altitude).  The "Change Level" mode is always parameterized by its 

target altitude.  Also shown is the transition mode “Capture GCP setting.”  The transitions among 

the various modes are depicted as the labeled arrows to be explained in detail below.  
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Figure 5.  Model of the vertical modes and activities. 

Each of the modes, represented by a rounded rectangle, can be thought of as a distinct aircraft 

activity which is fully defined in the autopilot and has an associated set of parameters.  For 

example, the “V/S to GCP setting” represents a climb or descent activity, and is parameterized by 

the value of the vertical speed setting (positive for a climb and negative for a descent) and the 

target-altitude setting.  Similarly, the “V/S free climb/descent” represents an unconstrained climb 

or descend activity (and is parameterized only by the value of the vertical speed setting).  The 

"Change Level" mode is fully specified by the target-altitude setting. The two “Hold altitude” 

activities are parameterized by the altitude setting.  Finally, the “Capture GCP setting” is 

parameterized by the target-altitude.  

In this system some of the modes have associated dynamics, and some of the transitions among 

them are triggered by the internal dynamics of the system. Thus, in the "V/S to GCP setting" 

activity, the vertical speed setting (which is not explicitly exhibited in Figure 5) determines the 

rate-of-change in altitude.  When the altitude reaches a value that satisfies the condition 

)](SetAlt[ ε∈ ,  an automatic transition to the mode "Capture GCP setting" takes place. This 

condition ( )](SetAlt[ ε∈ ) is triggered by the equation 

‘altitude_error’ + [‘altitude_error_rate’  *  ‘abs_val (‘altitude_error_rate’)] / (2  *  Nz  *  g) = 0 
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becoming true, (where Nz is the normal acceleration during the capture phase). The transition from 

“Change-Level to GCP setting” to “Capture GCP setting” is triggered dynamically by a similar 

condition.  In the "Capture GCP setting" mode, the level-off maneuver to the target altitude (as set 

in the GCP) is then executed.  When the condition ]SetAlt =[  is met, an automatic transition to 

“Hold Altitude” is triggered by the autopilot. 

Several mode transitions are engaged by the pilot manually. These include the transition from 

“Change-Level to GCP setting” to “V/S to GCP setting” and its reverse transition, as well as the 

transition from “Hold Altitude (V/S armed)” to “Change-Level to GCP setting.”  

The remaining mode transitions are triggered indirectly by the pilot through the change of a 

parameter. (Parameter changes sometimes trigger subtle mode transitions that cause significant 

changes in aircraft behavior and are a potential source for confusion and hazard.) Analysis of such 

transitions and their relation to display design are the focus of the ensuing discussion.  

The pilot can change the setting of the GCP altitude at any time.  There is a qualitative 

difference in the autopilot’s behavior depending on whether the altitude is changed to a value 

ahead or behind a specific critical altitude (e.g., the current altitude of the aircraft).  Here by ahead 

we mean in a temporal sense, that is, "higher than" the current altitude when climbing, and "lower 

than” the current altitude when descending.  (Similarly, behind means "lower than" when climbing, 

and "higher than" when descending). These GCP setting changes are shown in Figure 5 by the 

transition labels “=>” for ahead and “<=” for behind. The notation GCPSet =/  means that the 

GCP target altitude is substituted by the new setting.  Similarly, NewsetSet =/  denotes the 

resetting of the vertical speed value. 

Thus, when the autopilot is in the activity “V/S to GCP setting,” changing the GCP altitude dial 

to a value behind the current aircraft altitude triggers a transition to “V/S free climb/descent.”  In 

this activity, the aircraft continues the current climb/descent without any effective altitude 

constraint.  The reverse transition is triggered in the “V/S free climb/descent” activity, when the 

GCP altitude value is set ahead of the current altitude.  Similar transitions are triggered in the 

“Hold Altitude (V/S armed)” activity by changing the vertical speed setting, as depicted in Figure 

5.  

Of particular interest are the consequences of changing the GCP altitude setting while in the 

“Capture GCP setting” activity.  Here the critical altitude is not the current aircraft altitude, but 
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rather the altitude when the autopilot transitions into the “Capture GCP setting” mode (called 

henceforth the capture-start altitude). Thus, changing the GCP altitude setting to a value behind the 

capture-start, triggers a transition to “V/S free climb/descent.”  On the other hand, changing the 

setting to a value ahead of capture-start, triggers a transition to “V/S to GCP setting,” and the new 

altitude becomes the target altitude. (If, upon entering the “V/S to GCP setting” mode, the 

condition )](SetAlt[ ε∈  is satisfied by the new GCP setting, an instant transition back to “Capture 

GCP setting” takes place). The main point is, that by changing the GCP altitude to a value ahead of 

capture-start, the capture condition is retained, while changing to a value behind capture-start 

results in an unconstrained climb or descent.  

Analysis of Pilot-Autopilot Interaction 

Next we examine the pilot's ability to operate the aircraft reliably with respect to the vertical-

flight-modes just described. Specifically, we wish to examine whether the pilot can anticipate the 

next mode or autopilot activity, that will result from his or her interaction with the system.  To this 

end, we focus our attention on transitions that are triggered by the pilot upon changing the GCP 

altitude.  

We begin by examining the pilot’s interaction with the vertical-speed mode (V/S 

climb/descend), which we have partitioned into two sub-activities “V/S to GCP setting” and “V/S 

free climb/descend” because of the distinct responses of the autopilot when in these two activities. 

We shaded the two activities in Figure 5 to emphasize the fact that they belong to the same 

principal mode.  

First let us examine the transition between the two vertical speed sub-activities.  Note in Figure 

5, that by changing the GCP altitude to behind or ahead of the current altitude and vice versa, 

transitions are triggered between the “V/S to GCP setting” and the “V/S free climb/descend” 

activities.  The principal mode is “V/S climb/descend,” and in the display there is no annunciation 

of this transition. The pilot can deduce which sub-activity the aircraft is in (that is, whether capture 

will or will not eventually occur), only by comparing the current aircraft altitude with the GCP 

altitude setting.  (This is implicit knowledge, which many pilots are unaware of and thus have been 

surprised when the aircraft failed to capture the altitude set in the GCP. In pilots’ jargon such an 

occurrence is frequently referred to as "kill the capture").  
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Let us now examine the autopilot’s response to changes in the GCP altitude setting while the 

aircraft is in the “Capture GCP setting” mode.  Recall that if the GCP altitude is reset to a value 

ahead of capture-start, the aircraft will capture the newly set altitude by transitioning to the “V/S to 

GCP setting” activity.  However, if the GCP altitude is reset to a value behind the capture-start 

altitude, the newly set altitude will be ignored, and the autopilot will enter the unconstrained “V/S 

free climb/descent” activity.  

It is noteworthy that the capture-start altitude is always behind the current altitude. Therefore, 

when the GCP altitude is reset behind the current aircraft altitude, eventual capture is uncertain. In 

particular, capture will or will not take place, depending on whether the GCP setting is ahead of or 

behind the capture-start altitude (see Figure 6).  

However, the pilot has no explicit indication of the capture-start altitude, and this information is 

not retained by any display onboard the aircraft.  Therefore, the pilot will be unable to predict 

reliably whether the autopilot will transition to the “V/S to GCP setting” activity (with eventual 

capture of the newly set altitude), or into “V/S free climb/descent” activity (and “killing the 

capture”). 

 

 
 

Figure 6.  Capture profile. 

 



 13

User-model 

It is interesting to examine the autopilot behavior as described above in relation with the 

behavior described in the user-model, in this case, the pilot training manuals published by the 

manufacturer. A description of the relevant training material is presented graphically in Figure 7. 

The dashed self-loop transitions in the "Vertical Speed" and "Change Level" modes are not 

explicitly described in the manual, but can be deduced by a careful reader.  It is also noteworthy 

that in the training material there is no differentiation between the two "Vertical Speed" sub-

activities, but it is stated that when the aircraft’s vertical speed is set “away from” the GCP altitude 

setting, altitude capture will not take place.  

 

 

Figure 7.  Model of the vertical modes and activities (training manual version). 
 

As before, let us focus on the aircraft's response to changes of the GCP altitude setting in the 

various modes. From the description provided in the training manual, the following responses can 

be deduced:  
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If the GCP altitude is reset behind the current aircraft altitude while in the "Vertical Speed" 

mode, the aircraft will continue its flight away from the selected altitude. This is consistent with the 

actual autopilot behavior (as described in the previous sub-section). 

Next, we turn to the responses when the autopilot is in the Capture mode. According to Figure 

7, the system will respond to a change in the GCP altitude setting by reverting back to the "Vertical 

Speed" (V/S) mode. If the GCP is reset behind the current altitude so that the aircraft flies away 

from the GCP altitude setting, the current vertical speed will be retained and the aircraft will 

continue flight at this vertical speed without eventual altitude capture. That is, every change of the 

GCP setting to a value behind the current altitude, kills the capture. As discussed earlier and shown 

in Figure 6, this description is not the way the autopilot actually works! 

Finally, it may be noteworthy that there is another potentially surprising behavior that may be 

encountered by the pilot. This one occurs when the GCP altitude is reset while the aircraft is in the 

"Change Level " mode.  Here the pilot can expect the aircraft to adjust the climb rate to reach the 

designated altitude set in the GCP (at a constant airspeed and saturating throttle). The GCP altitude 

can be reset ahead or behind the current altitude with assured capture.  However, if the GCP 

altitude is changed after (the automatic) transition from "Change Level to GCP setting" to “Capture 

GCP setting", the autopilot reverts to the "Vertical Speed" mode so that now the eventual capture 

will depend on the altitude to which the GCP is changed (as described earlier).  Thus, even though 

there is no formal discrepancy between the user-model and the response of the autopilot, the subtle 

and automatic transition from the "Change Level to GCP setting" to “Capture GCP setting," causes 

a qualitative change in the autopilot behavior that the pilot may not anticipate.  

Incident Report 

An important source for obtaining information about pilot interaction with automated flight 

control systems, is NASA’s Aviation Safety Reporting System (ASRS).  (Following an incident, 

pilots can submit a detailed report to the ASRS, and are provided with certain assurances of 

anonymity and waiver of legal action against them (by the US Federal Aviation Administration, see 

Advisory Circular 00-46D)).  A search of the ASRS database revealed several incident reports 

involving the specific autopilot described above, which referenced changing the GCP altitude 

during the “Capture to GCP setting” activity (Aviation Safety Reporting System, 1998). Following 
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is one (slightly edited) excerpt.  We shall first present the pilot’s report and then our interpretation 

of the incident: 

On climb to 27,000 feet and leaving 26,500 feet. Memphis Center gave us a clearance to 

descend to 24,000 feet.  The aircraft had gone to “Capture” mode when the first officer 

selected 24,000 feet on the GCP altitude setting.  This disarmed the altitude capture and the 

aircraft continued to climb at approximately 300 feet-per-minute.  There was no altitude 

warning and this “altitude bust” went unnoticed by myself and the first officer, due to the 

slight rate-of-climb. At 28,500, Memphis Center asked our altitude and I replied 28,500 and 

started an immediate descent to 24,000 feet (ASRS report # 113722). 

In this incident, the first officer set a new altitude value (24,000) while the aircraft was 

climbing and in the “Capture” mode to 27,000 feet.  As discussed earlier, changing the GCP 

altitude to a value behind the capture-start altitude will result in a transition to “V/S free 

climb/descent” and to an unconstrained climb (which in this case was arrested manually by the 

crew at 28,500 feet).  Due to the slow rate of climb (300 feet-per-minute) computed by the 

autopilot at this altitude, the continuation of the climb beyond 27,000 feet was not easily noted by 

the crew. 

The incident clearly indicates the subtle pilot interaction (changing the GCP altitude value) that 

triggered the transition from “Capture GCP setting” to “V/S free climb/descent”—two qualitatively 

different activities.  Further, it points out the subtlety of the display cues available to the pilots 

about the transition between these two activities (compounded here, of course, by the slow rate-of-

climb at which the aircraft was leaving 27,000 feet). 

FORMAL ANALYSIS OF USER-MODEL CORRECTNESS 

The consistency of the user-model and the machine model can also be analyzed formally as 

described briefly below. A detailed exposition of a formal methodology for analysis of user-model 

and display correctness is given in Heymann & Degani (forthcoming). 

Let ΣM  denote the set of events, or transition labels, of the actual machine model. Since the 

user-model is an abstraction (simplification) of the machine model, the events that appear in the 

user-model, are a reduced subset of the machine’s event set as explained next.  

The event set Σ consists of three disjoint subsets; 1.  - the set of observed-events that 

includes all machine events that are presented in the display and appear also in the user-model, 2. 

M
o
MΣ
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m
MΣ  - the set of masked events (that consists of groups of two or more events each). Each group has 

a single representative in the user-model (and in the display). 3.  - the set of unobserved-events 

that are neither displayed nor appear in the user-model.  

u
MΣ

In view of the above, the event set  Σ  of the machine’s user-model consists of the union of 

the event sets Σ , the event set Π  (where  denotes the set of events obtained after 

masking the events in ), and the “empty event” 

USR

)o
M ( m

MΣ )( m
MΣΠ

m
MΣ ε  that represents the set of unobserved events. 

We turn now to the autopilot example of the previous section. The first five events in Table 1 

are observed events as can be seen from the correspondence between the two columns of the Table. 

The remaining events are masked events that consist of two groups, that comprise, respectively, 

five and two events. Each of these groups is mapped to a single event in the user-model as seen in 

the Table. (There are no unobserved events.) 

 
Table 1.  Correspondence between machine events and user-model events. 
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In actual operation, the machine is driven by events from Σ . The user tracks the progress of 

the machine with the aid of the display, where he observes events in , and the user-model at 

his disposal. Thus, the user-model and the machine evolve concurrently. But they are only partially 

synchronized because 1. not all machine events are observed, and some are masked, and because 2. 

the user-model is only an abstraction of the actual machine’s behavior.  

M

USRΣ

We shall say that the user-model is adequate for a given task, if under all operating conditions 

of the machine, the user is able to execute the task successfully, while reasoning about the progress 

of the machine through the user-model at hand. Thus, the “concurrent operation” (as discussed 

above) of the machine and the user-model, must never lead to an ambiguity, in so far as execution 

of the task as specified is concerned.  

In the present autopilot example, the task specification may consist, for example, of the 

requirement that at each instant and under all operating conditions, the user must be able to deduce 

(unambiguously) whether or not the GCP altitude will eventually be captured.  

To formally decide whether the display and associated user-model are adequate for the 

specification, we proceed by forming the composite model obtained by computing the masked 

synchronous product of the machine model and user-model. This product is computed as follows. 

Suppose that the machine is at configuration q at which a transition labeled α  is defined, leading to 

a configuration q’ (we denote this by ). Assume that when the machine is at 

configuration q, the user-model is at a corresponding configuration p. The event 

'qq → α

α  can be either 

observed, masked, or unobserved.  

If α  is an observed event, it is required, for adequacy of the user-model, that a corresponding 

transition be also defined at p, leading to, say, p’. That is, there must exist a transition . 

(Otherwise we would conclude that the user-model is an incorrect abstraction of the machine 

behavior, regardless of the task specification.) In the composite model there will appear a transition 

labeled 

'pp → α

α , from the configuration (pair) (q,p) to (q’,p’). That is, there will be in the composite 

model a transition .  )','(),( pqpq → α

If α  is a masked event, there must be a corresponding transition  in the user-

model, where 

')( pp  → Π α

)(αΠ  is the (masked) image of α  in . The transition in the composite model 

will appear as  The fact that the event labels in the composite model are 

USRΣ

).','()( pq → Π α),( pq
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taken as those from the user-model is because the composite model is formed “from the point of 

view of the user”.  

Finally, if  α  is unobserved, the transition in the composite model will appear as 

 since there is no corresponding transition in the user-model and the transition is 

“viewed” by the user as the empty or silent transition.   

)(),( qpq → ε ,' p

For the user-model to be adequate for the task specification, two conditions must be met. First, 

as stated earlier, the user-model must not block transitions in the composite model. That is, if  a 

transition is defined in the machine model, there must be a corresponding transition in the user-

model. In case of an observed transition there must be a corresponding transition with the same 

label in the user-model, and in case of a masked transition there must be a corresponding transition 

labeled by the masking image. Thus, in particular, every configuration that is reachable in the 

machine model is also reachable in the composite model. Finally, the composite model must not 

exhibit nondeterminism (i.e., ambiguity) with respect to the task specification.  

If the non-blocking condition is not satisfied, we must conclude that the user-model is an 

incorrect abstraction of the machine behavior. If the composite model exhibits nondeterminism 

with respect to the task specification, we must conclude that the abstraction is “too coarse” for the 

specification and hence inadequate. In this case more detail must be included in the user-model in 

order to satisfy the specification. 

In the case of the autopilot, the composite machine is obtained by forming the masked 

synchronous product of the machine model of Figure 5 and the user-model of Figure 7 with the aid 

of the event correspondence given in Table 1. The result is the composite model of Figure 8. 
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Figure 8.  Composite of machine model and user-model. 

 
It is readily seen in Figure 8 that the user-model is inadequate in that there are two 

configurations in the composite model from which nondeterministic transitions take place. 

Specifically, from the Capture GCP configuration, there are two transitions labeled move GCP that 

nondeterministically lead to either V/S to GCP setting or to V/S Free Climb/Descent, without the 

user being able to distinguish between them. Nondeterministic transitions emanate also from the 

Hold Altitude (V/S Armed) configuration sharing the label Move V/S wheel. 

DISPLAY SYNTHESIS AND INTERFACE RESOLUTION: A SYNOPSIS 

We have seen in a previous section an example of an advanced automation system in which an 

inadequate display for the specified operational task can lead to ambiguous and faulty interaction 

of the operator with the machine.  ASRS incident reports corroborate these findings. 

As stated earlier, a central objective of the research reported in the present paper, is to develop 

a methodology for systematic display synthesis.  Below we shall give a brief heuristic outline of the 
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proposed methodology, and describe its underlying concepts in an informal way using a simple 

illustrative example.  A detailed technical exposition of the methodology can be found elsewhere 

(Heymann & Degani, forthcoming). 

Let us consider the simple discrete system described in Figure 9:  

 
Figure 9.  Model of a simple discrete system. 

 
This system consists of 4 states, and is initialized at state 1 (as described by the entering arrow).  

There are 3 buttons labeled α, β, and γ, that the user can press at discretion, and these trigger 

transitions among the states as described in Figure 9 by the labeled arrows. If for example, the 

system is at state 1 and β is pressed, it moves to state 2.  If it is at state 2 and α is pressed, it moves 

to state 3 and if β is pressed it moves to state 4. If it is at state 4 and α is pressed, nothing happens, 

etc.  

The user is permitted at any time to press any button that s/he wishes, provided the user does 

not drive the system to state 4 (which represents a danger zone).  The task specification in this very 

simple example consists therefore of the requirement never to enter state 4.  Our objective is to 

“synthesize” a display and user-model that will enable the user to navigate the system safely; that 

is, will indicate at each instant which of the buttons, if any, the user is permitted (or not permitted) 

to press so as not to violate the specification.  Formally, this implies a partition of the state set into 
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two disjoint subsets as shown in Figure 10, one being the subset of legal states, that consists of the 

states 1, 2 and 3, and the other being the set of illegal states, or state 4. 

 
Figure 10.  Partitioning of the state-set into two disjoint (legal/illegal) subsets. 

 

 
Clustering the set of legal states into one super-state and the set of illegal states into another 

super-state yields the system depicted in Figure 11, in which all transitions among legal (or 

respectively, illegal) states are now viewed as self-loops in the corresponding super-states.  

 
Figure 11.  Clustering the legal and illegal states into super-states. 
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We immediately note that the event (button) labeled γ never leads to the illegal state set, and 

this button may always be pressed without risk of violating the specification.  However, this is not 

the case for the transitions labeled α and β which may or may not be legal, depending on internal 

detail inside the legal super-state. Thus, to decide whether the buttons α or βmay be pressed, it is 

not sufficient to know that the current state is legal. More detailed information is needed.  

The question that arises immediately is how much more detail is actually required.  Obviously, 

we could provide the user with a full description of the system (in our example, Figure 9), and at 

each instant let the user deduce from it which transitions are legal.  But this may be (and usually is) 

an unnecessary level of detail. We are aiming at designing (or deriving) a display and user-model 

that, while sufficient and reliable, is as succinct as possible.  

The interface resolution problem consists of deciding systematically how much information is 

minimally sufficient.  In other words, we need to refine the description of Figure 11 to the point 

where non-determinism with respect to entry to the illegal set is removed.  Specifically, the 

resolution must determine unequivocally when it is legal to press the buttons α or β, or not.  

Figure 12 depicts a “resolved” system where we distinguish between state 1 and the cluster of 

states 2 and 3. This is thus an adequate user-model and interface for the system that satisfies the 

specification. 

 
Figure 12.  A “resolved” system. 
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The task specification considered in the above example is of course quite trivial, and our 

methodology is designed to handle much more complex specifications. The most immediate 

generalization of the above example, which also explains the methodology required for the 

autopilot example of the previous section, proceeds along the following line of thought.  We are 

given a state-machine description of the system, in which the set of states is partitioned into a 

disjoint set of state clusters that represent disjoint activities as described, for example, in Figure 13.  

Thus, each state cluster represents an activity, and the display must be designed so as to inform the 

user unambiguously, at each instant, what the consequences (i.e. the ensuing activities) are of every 

event the user can trigger.  To this end, the partition into the specified activities may not be a fine 

enough partition (just as in the autopilot example), and further refinement (sub-partitioning) may 

be necessary.  The procedure to achieve the coarsest refinement that supports the necessary display 

is called interface resolution and is described in detail in Heymann & Degani, (forthcoming).   

 

 
Figure 13.  Partitioning a state set into disjoint clusters (that represent disjoint activities).  
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SUMMARY 

In this paper we have investigated the precise connection between the machine’s behavior, the 

task specification, the required user interface, and the user-model for ensuring that correct and 

unambiguous interaction between the user and the machine be possible.  In particular, we have 

focused attention on the problem of verifying that a given display and user-model are adequate for 

the specified task. We also addressed the problem of how a correct display and user-model for a 

given task can be synthesized.   

We have shown how this problem is crucial in pilot interaction with cockpit automation by 

exploring the vertical autopilot modes onboard one modern commercial airliner. We have 

demonstrated how in this autopilot, serious ambiguities exist with respect to the pilot’s interaction 

with the machine.  These ambiguities are directly attributable to inadequacy of the autopilot’s 

display and prevent the pilot from being able to determine whether the aircraft will level-off at the 

specified altitude.  Such ambiguities, which directly lead to, so-called, automation surprises, are 

documented in many pilot incident reports.   
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